
Running head: DEEP LEARNING FOR RAILROAD INSPECTION 1 

Deep Learning for Railroad Inspection 

Richard Fox-Ivey, Mario Talbot, John Laurent 

Pavemetrics Systems Inc. 

  



DEEP LEARNING FOR RAILROAD INSPECTION 2 

Table of Contents 

Abstract ...........................................................................................................................3 

1 Introduction .............................................................................................................4 

2 Artificial Intelligence, Machine Learning and Deep Learning ..................................5 

2.1 Artificial Intelligence Background....................................................................5 

2.2 A Deep Learning Case Study: Identifying Cancer Cells in Lymph Nodes .........7 

3 Applying Deep Learning to Railway Inspection ..................................................... 10 

3.1 Inspection Challenges in the Railway Industry ............................................... 10 

3.2 Overview of the Approach .............................................................................. 11 

3.3 Image Capture Equipment .............................................................................. 12 

3.3.1 Motion Compensation ................................................................................ 16 

3.4 Algorithm Details ........................................................................................... 17 

3.5 Training Process ............................................................................................. 18 

3.6 Algorithm Performance Testing ...................................................................... 19 

4 Conclusion ............................................................................................................. 21 

References ..................................................................................................................... 22 

 

 



DEEP LEARNING FOR RAILROAD INSPECTION 3 

Abstract 

Railway networks around the world are an important part of the transportation network and represent 

billions of dollars of investment. Poorly maintained networks negatively impact asset longevity, schedule 

performance and pose a serious threat to safety. In order to safeguard against these risks, Railroads 

typically inspect 100% of their mainline network at least annually and key locations even more 

frequently. Railroad inspection has traditionally been a manual process with inspectors walking the track 

or driving slowly in a high-rail vehicle to visually spot problems. This practice is very costly, time 

consuming, impacts schedule performance (due to the need for track possession), and puts staff at risk. 

While there have been some recent attempts to modernize the inspection process through the adoption of 

machine-vision technologies, these technologies are often still reliant on human inspectors manually 

reviewing images in order to spot defects. Manual review of images suffers from many of the same 

problems as manual inspections do: it is time consuming, subjective as opposed to being objective, and 

requires significant amounts of labor. This paper will explore a new approach which makes use of Deep 

Learning algorithms, specifically a Deep Neural Network, to automatically inspect images and has the 

potential to overcome these limitations. 

Keywords:  Artificial Intelligence, Neural Network, Machine Learning, Deep Learning, 

Deep Neural Networks, Railway, Safety, Inspection, 3D Laser Triangulation 
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1 Introduction 

Railway networks around the world are an important part of the transportation network 

and represent billions of dollars of investment. Poorly maintained networks negatively impact 

asset longevity, schedule performance and pose a serious threat to safety. In order to safeguard 

against these risks, Railroads typically inspect 100% of their mainline network at least annually 

and key locations even more frequently. Railroad inspection has traditionally been a manual 

process with inspectors walking the track or driving slowly in a high-rail vehicle to visually spot 

problems. 

This practice is very costly, time consuming, impacts schedule performance (due to the 

need for track possession), and puts staff at risk. While there have been some recent attempts to 

modernize the inspection process through the adoption of machine-vision technologies, these 

technologies are often still reliant on human inspectors manually reviewing images in order to 

spot defects. Manual review of images suffers from many of the same problems as manual 

inspections do: it is time consuming, subjective as opposed to being objective, and requires 

significant amounts of labor. 

This paper will explore a new approach that has the potential to overcome these 

limitations using Deep Learning algorithms, specifically a Deep Neural Network (DNN), to 

automatically inspect 3D Laser Triangulation images. 

3D laser triangulation captures a both a high-resolution image (2D) and a 3D point cloud 

of the entire track area and can be used at revenue speeds, day or night. 

DNN is a type of machine learning wherein the computer develops a solution to a 

complex problem in a way that is similar to how humans learn (using a neural network). Deep 
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Learning is well-suited to image analysis and has even been demonstrated to improve the 

accuracy of cancer detection by oncologists when used to analyze images of lymph nodes. 

This paper includes an overview of the principle of operation of 3D laser triangulation 

sensors as well as the field of Deep Learning. Sensor scanning frequency, resolution and 

accuracy are discussed along with data storage requirements and formats. The Deep Learning 

algorithm training process is also discussed and examples of Deep Learning image classification 

from both outside the rail industry, as well as inside the industry, are presented. 

2 Artificial Intelligence, Machine Learning and Deep Learning 

2.1 Artificial Intelligence Background 

John McCarthy (1927-2011), an American computer and cognitive scientist, coined the 

term Artificial Intelligence (AI) at the Dartmouth Conference in 1956 (John McCarthy (computer 

scientist), 2018). Since that time significant advances have been made in the field of AI, 

particularly in the area of Machine Learning (ML), and more recently in the sub discipline of 

Deep Learning (DL). 

Broadly speaking, ML relies on the use of human-developed algorithms to parse data, 

learn from the data, and then apply that knowledge to make subsequent decisions. One 

application of ML is the recommendation of new songs to streaming music subscribers based on 

matches with their historical listening preferences (Ciocca, 2017). However, while ML can be 

used to crunch large volumes of data in order to make useful recommendations, it relies upon a 

human designer to spell-out the logic behind those recommendations and, as such, it is ultimately 

limited to solving problems which the designer already knows how to solve. 

DL, a subset of ML, has the potential to outstrip ML due to its ability to develop its own 

methods of analysis, much in the same way that a human brain does, through the use of Artificial 
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Neural Networks (ANN). DL algorithms also have the advantage of not requiring re-training as 

new examples or classes are added. 

In ANN individual elements in the network are referred to as neurons and they are 

arranged in layers (input, hidden layers and the output layer) with connections between neurons 

being referred to as synapses (Figure 1 - Neural Network, (Stanford University, 2017)). 

 

Figure 1 - Neural Network 

The size and complexity of a neural network is typically defined in terms of its number of 

hidden layers and its total number of learnable parameters (Stanford University, 2017). Deep 

networks are networks which contain multiple hidden layers as opposed to just one or two. 

The total number of parameters in an ANN is determined by summing its weights and 

biases. Weights are determined by the number of possible permutations of its input, hidden layers 

and output layer. Biases are determined by summing the neurons in its hidden layers and the 

output layer. As an example, the ANN in Figure 1 contains a total of 9 neurons (not counting the 

inputs), 32 weights, 9 biases and 41 learnable parameters. 

In 2018 the science behind DL already impacts millions of people on a daily basis as it is 

behind both the recommendations that Netflix makes regarding what to watch next (Alex Chen, 

2014), and the facial recognition Facebook performs to tag friends in uploaded images (Marr, 4 

Mind-Blowing Ways Facebook Uses Artificial Intelligence, 2016). 
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The ability of DL to solve problems which the designer does not yet know how to solve is 

one of its key advantages. An example of this advantage can be found in Google’s AlphaGo 

computer program. The DL algorithms in AlphaGo have enabled it to learn how to play the 

2,500+ year old Chinese strategy game Go by playing against human opponents. Over time the 

AlphaGo DL algorithm has been able to improve its playing ability (essentially learn), through 

repeated matches, to the point where it has been able to beat a number of the world’s top players 

(The story of AlphaGo so far, 2018). This feat would not have been possible using ML only as a 

ML computer would be limited to consulting a pre-defined list of moves and recommended 

counter-moves rather than developing its own strategy for matches. 

Directly relevant to the topic at hand, is the application of DL in the medical field to 

solve the problem of cancer cell identification in lymph node images. In 2016 a DL team from 

the Harvard Medical School’s Beth Israel Deaconess Medical Center (BIDMC) and the Michigan 

Institute of Technology (MIT) was able to reduce the human error rate in cancer diagnosis by an 

incredible 85 percent and successfully identify cancer 92 percent of the time (Kontzer, 2016). 

In theory there is no limit to the application of DL due to its ability to tackle novel 

problems by developing its own solutions. It is with this in mind that the research team turned to 

the challenging problem of developing DL strategies for the automated inspection of railway 

asset condition and safety. 

2.2 A Deep Learning Case Study: Identifying Cancer Cells in Lymph Nodes 

The field of Pathology is responsible for providing accurate and repeatable diagnoses of 

disease in order to help patients make informed decisions about treatment and management. 

However the task of disease identification primarily relies upon the qualitative assessment of 

cells under a microscope. Even for well-trained pathologists this is a time consuming and 
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strenuous task due to lack of standardization, diagnostic errors, and the significant cognitive load 

associated with manually evaluating images (Dayong Wang, 2016). 

In 2016 a team from Harvard’s Beth Israel Deaconess Medical Center and the 

Massachusetts Institute of Technology (The Harvard and MIT Team) was successful in placing 

first for both competition categories at the prestigious Camelyon Grand Challenge. Their project 

involved the development of a DL algorithm to assist pathologists in the identification of 

metastatic breast cancer cells. 

Their approach involved “millions of training patches to train a deep convolutional neural 

network to make patch-level predictions to discriminate tumor-patches from normal-patches” 

(Dayong Wang, 2016). 

The algorithm development process involved the use of a dataset of 400 images 

containing both cancerous and non-cancerous cells (identified by a pathologist). Of the 400 

images 270 were used for algorithm training purposes and the remaining 130 were used to test 

the resulting algorithms. During the training process slide images were  combined with ground 

truth data in order to create both positive and negative, 256 x 256 pixel, sample images which 

were used to teach the DL algorithm how to distinguish between cancerous and non-cancerous 

cells. Following the training process the DL algorithm was tested against the 130 test images in 

order to determine algorithm performance (Figure 2 - Framework of Cancer Metastases 

Detection). 
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Figure 2 - Framework of Cancer Metastases Detection 

The performance of four popular deep learning architectures, including GoogLeNet, 

AlexNet, VGG16 and FaceNet, were evaluated by the team. Of the four architectures tested, the 

two deeper architectures, GoogLeNet and VGG16, produced the best results (Dayong Wang, 

2016). 

The team ultimately settled on the use of GoogLeNet, which offers 27 layers and more 

than 6 million parameters, for its fast performance and stability. While the performance of the 

DL algorithm at the time of the competition was not yet able to best a human pathologist (it 

yielded an error rate of 7.5% versus 3.4%) the algorithm was able to reduce the pathologist’s 

error rate to just 0.52% when its predictions were combined with the pathologist’s (Dayong 

Wang, 2016). 

It is with this success in mind that the research team decided to adopt a similar approach 

in the development of DL algorithms for the analysis of railway inspection images and the 

identification of railway maintenance and safety defects. 
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3 Applying Deep Learning to Railway Inspection 

3.1 Inspection Challenges in the Railway Industry 

Railway networks around the world represent billions of dollars of investment. Poorly 

maintained networks negatively impact asset longevity, schedule performance and pose a serious 

threat to safety. In order to safeguard against these risks, Railroads typically inspect on hundred 

(100) percent of their mainline network at least annually, and key locations even more frequently.  

However, aside from the use of rail geometry measurement cars, the average railroad 

inspection is largely a manual process with inspectors walking the track or driving slowly in a 

high-rail vehicle to visually spot problems. This practice is very costly, time consuming, impacts 

schedule performance (due to the need for possession), and puts staff at risk. 

In contrast, modern image-based approaches to railway inspection seek to create a 

permanent visual record of railway conditions which can be subsequently analyzed by trained 

inspectors from the comfort and safety of an office environment. Inspectors are trained to spot 

potential problems in the railway network visually, including: rail surface damage, damaged 

crossties (sleepers) and missing fasteners. 

However the task is not an easy one as rail networks are typically not homogenous in 

nature and can contain a wide variety of rail types and weights, fastener types and 

configurations, crosstie materials and conditions, special track work, and other elements which 

the inspector must identify and evaluate. 

While there are indeed a great many advantages to the use of human expertise for visual 

inspection, there are also a number of challenges. Key among them is the subjective nature of 

human inspection in terms of data quality with no two inspectors “seeing” the same railway 

condition in exactly the same way. Compounding this problem is the repetitive nature of the task 
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which tends to lower inspector performance as their working shift progresses. Lastly there is the 

impact of both personal and professional pressures on the quality of results from factors such as 

work deadlines, personal health, etc. 

In recent years the industry has responded to this challenge by attempting to develop 

computer-based image processing techniques to supplement or replace the efforts of human 

inspectors. Invariably these approaches involve ML techniques which rely upon the designer 

defining the elements which the computer algorithm should identify. While some successes have 

been realized using this approach, the complex nature of the railway environment makes it very 

difficult to program for all instances. 

DL has the potential to address the short comings of both human-based inspection and 

ML-based inspection by leveraging the best qualities of both approaches. Much in the same way 

that DL has shown potential to assist pathologists with the challenging task of image analysis in 

the medical field, the authors believe that inspectors in the railway industry can be likewise 

benefit from the power of DL. 

3.2 Overview of the Approach 

The task of automatic identification of railway assets was selected in order to evaluate the 

potential for DNN to assist in railway inspection. This was deemed a logical first step as later 

research into the reporting of missing or damaged components, for example, would require 

existing features to first be detected and identified.  

The first step in the process was to capture intensity and range images using a 3D Laser 

Triangulation sensor, and to correct them for the effects of vehicle motion. Captured images were 

then fed into the DNN and 35 x 35 pixel sub images were created to serve as inputs for algorithm 

training and testing. Sub images were then processed in order to create raw labeled images 
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corresponding to four railway asset types; fasteners, ballast, wooden ties and concrete ties. 

Adjacent classified sub images with the same classification where then grouped together in order 

form regions corresponding to assets. Output from the image grouping process was then used to 

identify features present in the full resolution images (Figure 3 - High-Level Approach): 

 

Figure 3 - High-Level Approach 

3.3 Image Capture Equipment 

Pavemetrics’ Laser Rail Inspection System (LRAIL) was used for image capture. The 

LRAIL is a 3D Laser Triangulation sensor which combines pulsed high-power invisible laser line 

projectors, custom filters, and synchronized cameras to capture a high-resolution intensity image 

and 3D range profile of the railway trackbed. Laser light is used to illuminate railway surfaces 

and high-speed cameras are used to capture images of the projected light including its intensity 

and 3D shape (Figure 4 - Laser Triangulation Principle of Operation). 
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Figure 4 - Laser Triangulation Principle of Operation 

An optical encoder is used to trigger image capture and images are sent to a frame 

grabber to be digitized and then processed by the CPU. Image compression is performed on-the-

fly using lossless algorithms to minimize data storage without compromising the usefulness of 

the data. 

The LRAIL captures both Intensity and Range images of railway assets simultaneously. 

Intensity images (Figure 5 - Intensity Image) are produced by mapping the intensity of the 

reflected laser light, and Range images (Figure 6 - Range Image) are produced by mapping the 

elevation of each measurement point. 
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Figure 5 - Intensity Image 

 

 

Figure 6 - Range Image 

 

Resulting images are approximately 4,000 pixels wide with a lateral resolution of a point 

per millimeter and a longitudinal scan interval (as the inspection vehicle travels along the track) 

of a scan per millimeter. The end result is a 1 millimeter by 1 millimeter scan of the railway 

(Figure 7 - 1mm by 1mm Scan of Railway). 
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Figure 7 - 1mm by 1mm Scan of Railway 

For this project, Pavemetrics’ Laser Rail Inspection System (LRAIL) along with 

associated hardware (wheel-encoder, GPS receiver, DC to AC power invertor, etc.) was deployed 

on a high-rail (Figure 8 - LRAIL Sensor Deployment on High-Rail Vehicle). 

 

Figure 8 - LRAIL Sensor Deployment on High-Rail Vehicle 

The key parameters of the LRAIL are presented in Table 1 - Key LRAIL Parameters: 

Table 1 - Key LRAIL Parameters 

Criteria Performance 

Longitudinal Scan Interval Adjustable; 1 millimeter as tested 

Vertical Resolution 0.1 millimeter 
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Horizontal Resolution 1 point per millimeter 
Transversal Field of View Adjustable; 3.5m as tested 

Data Storage Requirements Approximately 5GB per mile at 1mm scan 
intervals 

Output Formats JPEG Images, XML, LAS 

 

3.3.1 Motion Compensation 

As the high-rail vehicle traverses the track there is a great deal of vehicle vibration due to 

track conditions and features which would otherwise create distortions in 2D and 3D data 

preventing subsequent analysis. To overcome this challenge inertial sensors are incorporated into 

each laser head in order to track pitch, roll and heading (inertial) for each sensor while the 

inspection vehicle is in motion. These data are processed by specialized algorithms in order to 

remove their effect on captured scans (Figure 9 - Correction for Vehicle Motion). 

 

Figure 9 - Correction for Vehicle Motion 
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3.4 Algorithm Details 

The image classification algorithm is a seven layer (6 hidden layers and 1 output layer) 

Supervised Machine Learning (SML) algorithm based on DeepCNet which combines 62,040 

weights and 76 biases for a total of 62,116 learnable parameters (Figure 10 - DNN Diagram). 

 

Figure 10 - DNN Diagram 

In order to determine if an image contains a fastener, some ballast, a concrete tie or a 

wooden tie, the algorithm first divides each 4,000 pixel x 2,000 pixel image into two 35 x 35 

pixel sub-images. Each 35 x 35 pixel image is then labeled by the algorithm as either “fastener,” 

“ballast,” “wood,” or “concrete” thus creating  a “raw labeled” image. 

Then the full 4,000 x 2,000 pixel image is processed in order to group adjacent pixels 

which share the same label in order to form regions which will ultimately correspond to 

identified railway components (Figure 11 - Illustration of the Processing Steps: A) Input Images, 

B) Image Labeling, C) Raw Labeled Image, D) Final Labeled Image). 
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Figure 11 - Illustration of the Processing Steps: A) Input Images, B) Image Labeling, C) Raw Labeled 

Image, D) Final Labeled Image 

3.5 Training Process 

The training of SML algorithms is iterative in nature with training data fed into the 

algorithm, the algorithm performing a classification, and finally feedback as necessary from a 

human “trainer” in order to improve performance over time (Brownlee, 2017) and (Marr, 

Supervised V Unsupervised Machine Learning -- What's The Difference?, 2017). The training 

process continues until no further improvements can be realized in classification performance; at 

this point the DL algorithm is said to have converged. Each complete run through of the training 

dataset is referred to as an epoch with a typical training cycle requiring fifty (50) or more epochs. 

For this project a dataset of just over two hundred (200) 3.5m x 2m Intensity images and 

3.5 x 2m range images (100 of each) was developed. The two hundred image dataset was 

divided, with half of the images being used for training purposes (50 intensity images and 50 

range images) and the other half (50 intensity images and 50 range images) used for testing 

... 
Deep Neural 

Network 

... 

... 

... 
A) B) C) D) 
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purposes. Each set of one hundred (50 intensity + 50 range) images was then processed in order 

to create 35 x 35 pixel sub images for a total of two hundred sub images (100 intensity sub 

images and 100 range sub images) for both the training dataset and the testing dataset. 

During training sub-images containing example fasteners, ballast materials, concrete ties 

and wooden ties were input into the DNN in order to generate a candidate image classification 

(Figure 12 - Fastener Classification Example). 

 

Figure 12 - Fastener Classification Example 

Candidate classifications where then compared to the recommended classifications from 

the trainer; creating a feedback loop in order for the DNN to improve its recommendations. This 

training process was repeated a total of one hundred and seven times (107 epochs) and the DNN 

error (the difference between expected and actual classification) was calculated for each epoch in 

order to subsequently adjust the weight of algorithm parameters. 

3.6 Algorithm Performance Testing 

Once the training process was completed, the DNN was applied to the test dataset in 

order to evaluate performance using novel cases. The overall performance of the algorithm 

Deep Neural 

Network 

Candidate Classification: 

“Fastener” 
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exceeded expectations with 100% accuracy achieved for fastener, ballast and concrete tie 

classification. However, classification of wooden ties suffered slightly with two 35 x 35 pixel 

images containing wooden ties being incorrectly labeled as concrete (Table 2 - Number of Errors 

of Each of the Classes). However, due to the algorithm’s subsequent step of grouping like-

labeled images together in order to form regions, these incorrect cases were discarded as noise. 

Table 2 - Number of Errors of Each of the Classes 

 Fastener Ballast Concrete Tie Wooden Tie 

Number of Errors 0 0 0 2 

Percentage Error 0% 0% 0% 1% (1/99) 
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4 Conclusion 

This study demonstrates the potential of DNNs to automate railway inspection. From a 

relatively small set of two hundred (200) training images, and one hundred and seven (107) 

epochs, the algorithm was able to correctly identify 100% of the images containing fasteners, 

ballast, and concrete ties in the 200 test image dataset. 

While there was a 1% error rate in the identification of sub images containing wooden 

ties, this error was able to be eliminated through the algorithm’s region grouping function. 

One interesting observation from the researchers is that much like every human brain, 

each DNN is unique due to its specific combination of nodes, layers and connections as well as 

the constant evolution of these same factors. This quality makes it impossible to define the exact 

methodology of any given DNN and has the interesting implication of preventing a DNN from 

being patented as well as preventing a DNN from infringing upon an existing patent. 

Network level validation of the DNN is now underway using an expanded dataset and the 

inclusion of new features such as spikes, joint bars, crossings and switches. 
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